平面向量(平面向量基本定理)
一、什么是平面向量?
既有方向又有大森伍小的量叫做向量(物理学中叫做矢量),只有大小没有方向的量叫做数量(物理学中叫做标量)。
具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作AB。
有向线段AB的长度叫做向量的模,记作|AB|。
有向线段包含3个因素:起点、方向、长度。
相等向量、平行森或向量、共线向量、零向量、单位向量:
长度相等且方向相同的向量叫做相等向量。
两个方向相同或相反的非零向量叫做平行向量,
向量a、b平行,记作a∥b,零向量与任意向量平行,即0∥a,
在向量中共线向量就是平行向量,(这和直线不同,直线共线就是同一条直线了,而向量共线就是指两条是平行向量)
长度等于0的向量叫做零向量,此春伍记作0。
零向量的方向是任意的;且零向量与任何向量都垂直。
长度等于1个单位长度的向量叫做单位向量。
二、平面向量的概念是什么?
平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。
扩展资料:
有关推论
三角形ABC内一点O,OA·OB=OB·OC=OC·OA,则点O是三角形的垂心。
若O是三角和空形ABC的外心,点M满足OA+OB+OC=OM,则M是三角形ABC的垂心。
若O和三角形ABC共面,且满足OA+OB+OC=0,则O是三角形ABC的帆握重心。
三点共线:三点A,B,C共线推出OA=μOB+aOC(μ+a=1)
平面三角形ABC内有一点O,则S△BCO*OA+S△态棚庆ACO*OB+S△ABO*OC=0