收敛一定有界_收敛一定有界举例
收敛数列一定有界吗?
收敛数列一定是有界的,收敛的数列{xn},在n→∞时,xn→A,这个A是一个固定的极限值,是一个常数,所以必然有界。但这个有界不是说上下界都有,只有上界、或只有下界、或上下界都有均可以叫有界。
数列收敛一定有界,(反证,假设无界,肯定不收敛);有界数列不一定收敛,(反例,数列{(-1)^n}是有界的,但它却是发散的。
数列收敛则数列必然有界,但是反过来不一定成立!如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。无界数列一定发散,所以有界是收敛的必要条件;但是有界数列不一定收敛。
收敛数列一定有界,但不一定单调,有的收敛数列在极限值附近来回震荡就不是单调的。设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n;N时,恒有|Xn-a|;q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。
收敛数列一定有界(反证,假设无界,肯定不收敛)有界数列不一定收敛(反例,数列{(-1)^n}是有界的,但它却是发散的)本质的不同数列的收敛是指当n趋于无穷时数列项趋于一个数,而数列的前面的有限项是一个确定的数,显然有界,当n趋于无穷时数列收敛,说明后面的任意项都是一个有限的数。
数列收敛与存在极限的关系:数列收敛则存在极限,这两个说法是等价的;数列收敛与有界性的关系:数列收敛则数列必然有界,但是反过来不一定成立!如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。
收敛必定有界吗?为什么?
收敛函数一定有界。收敛函数就是趋于无穷的(包括无穷小或者无穷大),该函数总是逼近于某一个值,这就叫函数的收敛性。从字面可以含义,就可理解为,函数的值总被某个值约束着,就是收敛,所以收敛必定有界,但是不一定上下界都有。y=1/x收敛,它在无穷时为0,所以有上界。
收敛必然有界,反之不一定;连续是说函数在某范围是一条不间断的曲线。与收敛、有界,没有必然关系。比如,数列是典型的不连续函数,但是,可以收敛、有界;y=sinx是典型的有界、处处收敛、连续的函数。
(1) 收敛一定有界,因为收敛会逐渐逼近一个确定值,因此在收敛方向上一定有界;如 f(x) = e^(-x) *sinx 当x趋近正无穷时;(2) 有界不一定收敛,可以在边界内跳跃或震荡;例如 f(x)=sinx 有界,|f(x)|;=1,但是当x趋近正无穷时,却不收敛。
收敛序列一定有界。这是因为收敛序列的定义就是:如果一个数列的项越来越接近于某一个确定的数,那么这个数列就被称为收敛序列。这个确定的数就是这个数列的极限。首先,我们来看一下什么是有界序列。
收敛函数一定有界吗
1、一定有界。收敛函数就是趋于无穷的包括无穷小或者无穷大,该函数总是逼近于某一个值,这就叫函数的收敛性,函数的值总被某个值约束着,就是收敛,所以一定有界。收敛函数的特性为:一般的级数它的各项为任意级数。如果级数Σu各项的绝对值所构成的正项级数收敛,则称级数绝对收敛。
2、收敛函数一定有界。收敛函数就是趋于无穷的(包括无穷小或者无穷大),该函数总是逼近于某一个值,这就叫函数的收敛性。从字面可以含义,就可理解为,函数的值总被某个值约束着,就是收敛,所以收敛必定有界,但是不一定上下界都有。y=1/x收敛,它在无穷时为0,所以有上界。
3、(1) 收敛一定有界,因为收敛会逐渐逼近一个确定值,因此在收敛方向上一定有界;如 f(x) = e^(-x) *sinx 当x趋近正无穷时;(2) 有界不一定收敛,可以在边界内跳跃或震荡;例如 f(x)=sinx 有界,|f(x)|;=1,但是当x趋近正无穷时,却不收敛。